Liquid-Infused Silicone As a Biofouling-Free Medical Material

نویسندگان

  • Noah MacCallum
  • Caitlin Howell
  • Philseok Kim
  • Derek Sun
  • Ronn Friedlander
  • Jonathan Ranisau
  • Onye Ahanotu
  • Jennifer J. Lin
  • Alex Vena
  • Benjamin Hatton
  • Tak-Sing Wong
  • Joanna Aizenberg
چکیده

There is a dire need for infection prevention strategies that do not require the use of antibiotics, which exacerbate the rise of multiand pan-drug resistant infectious organisms. An important target in this area is the bacterial attachment and subsequent biofilm formation on medical devices (e.g., catheters). Here we describe nonfouling, lubricant-infused slippery polymers as proof-of-concept medical materials that are based on oil-infused polydimethylsiloxane (iPDMS). Planar and tubular geometry silicone substrates can be infused with nontoxic silicone oil to create a stable, extremely slippery interface that exhibits exceptionally low bacterial adhesion and prevents biofilm formation. Analysis of a flow culture of Pseudomonas aeruginosa through untreated PDMS and iPDMS tubing shows at least an order of magnitude reduction of biofilm formation on iPDMS, and almost complete absence of biofilm on iPDMS after a gentle water rinse. The iPDMS materials can be applied as a coating on other polymers or prepared by simply immersing silicone tubing in silicone oil, and are compatible with traditional sterilization methods. As a demonstration, we show the preparation of siliconecoated polyurethane catheters and significant reduction of Escherichia coli and Staphylococcus epidermidis biofilm formation on the catheter surface. This work represents an important first step toward a simple and effective means of preventing bacterial adhesion on a wide range of materials used for medical devices.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Self-replenishing vascularized fouling-release surfaces.

Inspired by the long-term effectiveness of living antifouling materials, we have developed a method for the self-replenishment of synthetic biofouling-release surfaces. These surfaces are created by either molding or directly embedding 3D vascular systems into polydimethylsiloxane (PDMS) and filling them with a silicone oil to generate a nontoxic oil-infused material. When replenished with sili...

متن کامل

Evaluation of the performance enhancement of silicone biofouling-release coatings by oil incorporation.

In response to increased evidence of ecosystem damage by toxic antifouling paints, many researchers have developed nontoxic silicone fouling release coatings. The fouling release capability of these Systems may be improved by adding nonbonding silicone oils to the coating matrix. This idea has been tested by comparing the adhesion strength of hard- and soft-fouling organisms on a cured polydime...

متن کامل

Dynamic surface deformation of silicone elastomers for management of marine biofouling: laboratory and field studies using pneumatic actuation.

Many strategies have been developed to improve the fouling release (FR) performance of silicone coatings. However, biofilms inevitably build on these surfaces over time. Previous studies have shown that intentional deformation of silicone elastomers can be employed to detach biofouling species. In this study, inspired by the methods used in soft-robotic systems, controlled deformation of silico...

متن کامل

The effects of copper additives on the quantity and cell viability of adherent Staphylococcus epidermidis in silicone implants.

This in vitro study evaluated the antibacterial effect of copper additives in silicone implants. Specimens of a standard silicone material used in breast augmentation and modified copper-loaded silicone specimens were prepared and incubated in a Staphylococcus epidermidis suspension (2 h, 37 degrees C). After the quantification of adhering staphylococci using a biofluorescence assay (Resazurin)...

متن کامل

Structure-property relationships of silicone biofouling-release coatings: effect of silicone network architecture on pseudobarnacle attachment strengths.

Model silicone foul-release coatings with controlled molecular architecture were evaluated to determine the effect of compositional variables such as filler loading and crosslink density on pseudobarnacle attachment strength. Pseudobarnacle adhesion values correlated with filler loadings in both condensation and hydrosilylation-cured silicones. Variation of crosslink density of hydrosilylation-...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015